類神經網路應用 (applications of artificial neural network, ANN)
Keywords : ANN, Artificial neural network, Machine learning, Application, Forging, Wear, Roll forming, Material, Metal forming, Flow stress curve,Forming limit curve ... .
____________________________________________________________
____________________________________________________________
雲端服務 (cloud service):
- [] Azure Machine Learning Studio, MICROSOFT, https://azure.microsoft.com/zh-tw/services/machine-learning-studio/
- [] Neural Network Console, Sony, https://dl.sony.com
免費 / 開源軟體 (free / open source):
商用軟體:
____________________________________________________________
____________________________________________________________
應用 (application):
- [] 折彎 (bending):U型折彎彈回預測 [AMPT,2007]。
- [] 成本預估 (cost estimation):以倒傳遞神經模型進行沖壓模具成本預估 [NCA,2014]
- [] 深引伸 (deep drawing):初始鈑料輪廓控制點設計 [JIAMT,2010]。
- [] 熱鍛 (hot forging) :以鍛造溫度與溢料厚度作為輸入參數,預估熱鍛模具之磨耗深度 [AJSE,2012] 。
- [] 連續輥軋 (roll forming):成形負荷 [AMT,2012]、成形破壞 [IJMF,2013] .
- [] 材料 (material):預估鎂合金 AZ-31 之塑流曲線 (flow stress curve) 與成形極限曲線 (forming limit curve, FLC) [CMS,2011] 。
- [] 徑向鍛造 (radial forging):以初始料溫、模具入口角度、進給率、斷面縮減率作為輸入參數,透過 MATLAB 預估徑向鍛造(radial forging)成形負荷 [NCA,2014]。
- [] 專家系統 (expert system):造紙機專家系統 [KAM,2009]。
____________________________________________________________
REFERENCE
- [] Photo, PIXABAY, https://goo.gl/JyDhJt
- [] 人工神經網路, WIKI, https://goo.gl/nBdoMu
- [] 機器學習, WIKI, https://goo.gl/tAjKFb
- [] Fast Artificial Neural Network Library (FANN), http://leenissen.dk/fann/wp/
- [] Stuttgart Neural Network Simulator (SNNS), http://www.ra.cs.uni-tuebingen.de/SNNS/
- [] Stuttgart Neural Network Simulator (SNNS), WIKI, https://en.wikipedia.org/wiki/SNNS
- [] Neuro Solutions, http://www.neurosolutions.com/
- [] Neural Network Toolbox, MathWorks, https://www.mathworks.com/products/neural-network.html
- [] STATISCA, WEB, http://statistica.io
----------
REF. PAPERs
- [] A. Chamekh, S. BenRhaiem, H. Khaterchi, H. BelHadjSalah,R. Hambli (2010) An optimization strategy based on a metamodel applied for the prediction of the initial blank shape in a deep drawing process, International Journal of Advanced Manufacturing Technology, Vol.50, pp.93-100. https://link.springer.com/article/10.1007/s00170-009-2512-y
- [] A. Azari, M. Poursina,D. Poursina (2014) Radial forging force prediction through MR, ANN, and ANFIS models, Neural Computing & Applications, Vol.25, pp.849-858. https://link.springer.com/article/10.1007/s00521-014-1562-8
- [] B. Ozcan,A. Figlali (2014) Artificial neural networks for the cost estimation of stamping dies, Neural Computing & Applications, Vol.25, pp.717-726. https://link.springer.com/article/10.1007%2Fs00521-014-1546-8
- [] H. S. Park,T. V. Anh (2013) Development of two-phase neural network-genetic algorithm hybrid model in modeling damage evolution in roll forming of aluminum sheet, International Journal of Material Forming, Vol.6, pp.423-436. https://link.springer.com/article/10.1007%2Fs12289-012-1096-5
- [] M. R. S. Yazdi, G. S. Bagheri,M. Tahmasebi (2012) Finite Volume Analysis and Neural Network Modeling of Wear During Hot Forging of a Steel Splined Hub, Arabian Journal for Science and Engineering, Vol.37, pp.821-829. https://link.springer.com/article/10.1007%2Fs13369-012-0210-9
- J. G. Wu, Q. Li,Y. Yan (2012) Emulation and prediction of the cold roll forming force, Advanced Manufacturing Technology, Pts 1-4, Vol.472-475, pp.206-213. https://www.scientific.net/AMR.472-475.206
- [] A. Forcellese, F. Gabrielli,M. Simoncini (2011) Prediction of flow curves and forming limit curves of Mg alloy thin sheets using ANN-based models, Computational Materials Science, Vol.50, pp.3184-3197. http://www.sciencedirect.com/science/article/pii/S0927025611003211
- [] X. M. Yu, Y. Zeng,K. S. Zhang (2009) The Analysis and Explore on Paper Making Expert System, 2009 Second International Symposium on Knowledge Acquisition and Modeling: Kam 2009, Vol 3, pp.319-322. http://ieeexplore.ieee.org/document/5362307/
- [] W. J. Liu, Q. Liu, F. Ruan, Z. Y. Liang,H. Y. Qiu (2007) Springback prediction for sheet metal forming based on GA-ANN technology, Journal of Materials Processing Technology, Vol.187, pp.227-231. http://www.sciencedirect.com/science/article/pii/S0924013606010909
____________________________________________________________
沒有留言:
張貼留言